Improving Question Retrieval in Community Question Answering Using World Knowledge
نویسندگان
چکیده
Community question answering (cQA), which provides a platform for people with diverse background to share information and knowledge, has become an increasingly popular research topic. In this paper, we focus on the task of question retrieval. The key problem of question retrieval is to measure the similarity between the queried questions and the historical questions which have been solved by other users. The traditional methods measure the similarity based on the bag-of-words (BOWs) representation. This representation neither captures dependencies between related words, nor handles synonyms or polysemous words. In this work, we first propose a way to build a concept thesaurus based on the semantic relations extracted from the world knowledge of Wikipedia. Then, we develop a unified framework to leverage these semantic relations in order to enhance the question similarity in the concept space. Experiments conducted on a real cQA data set show that with the help of Wikipedia thesaurus, the performance of question retrieval is improved as compared to the traditional methods.
منابع مشابه
Boosting Passage Retrieval through Reuse in Question Answering
Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...
متن کاملارایه یک پیکره پرسش و پاسخ مذهبی در زبان فارسی
Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...
متن کاملQuestion Retrieval in Community Question Answering Enhanced by Tags Information in a Deep Neural Network Framework
Community Question Answering (CQA) platforms need to be easy and fast in question or answer exploration. It is common to use tags to categorize items in these platforms, and create taxonomies that assist exploration, indexing and searching. The focus of this thesis lies in recommending similar questions (Question Retrieval) by simultaneously deciding whether the contexts of two questions are si...
متن کاملExternal Knowledge Sources for Question Answering
MIT CSAIL’s entries for the TREC Question Answering track (Voorhees, 2005) focused on incorporating external general-knowledge sources into the question answering process. We also explored the effect of document retrieval on factoid question answering, in cooperation with a community focus on document retrieval. For the new relationship task, we present a new passage-retrieval based algorithm e...
متن کاملImproving Question Retrieval in cQA Services Using a Dependency Parser
The translation based language model (TRLM) is state-ofthe-art method to solve the lexical gap problem of the question retrieval in the community-based question answering (cQA). Some researchers tried to find methods for solving the lexical gap and improving the TRLM. In this paper, we propose a new dependency based model (DM) for the question retrieval. We explore how to utilize the results of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013